Learning Filter Bank Sparsifying Transforms

نویسندگان

  • Luke Pfister
  • Yoram Bresler
چکیده

Data is said to follow the transform (or analysis) sparsity model if it becomes sparse when acted on by a linear operator called a sparsifying transform. Several algorithms have been designed to learn such a transform directly from data, and data-adaptive sparsifying transforms have demonstrated excellent performance in signal restoration tasks. Sparsifying transforms are typically learned using small sub-regions of data called patches, but these algorithms often ignore redundant information shared between neighboring patches. We show that many existing transform and analysis sparse representations can be viewed as filter banks, thus linking the local properties of patch-based model to the global properties of a convolutional model. We propose a new transform learning framework where the sparsifying transform is an undecimated perfect reconstruction filter bank. Unlike previous transform learning algorithms, the filter length can be chosen independently of the number of filter bank channels. Numerical results indicate filter bank sparsifying transforms outperform existing patch-based transform learning for image denoising while benefiting from additional flexibility in the design process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning sparsifying filter banks

Recent years have numerous algorithms to learn a sparse synthesis or analysis model from data. Recently, a generalized analysis model called the ’transform model’ has been proposed. Data following the transform model is approximately sparsified when acted on by a linear operator called a sparsifying transform. While existing transform learning algorithms can learn a transform for any vectorized...

متن کامل

Learning Overcomplete Signal Sparsifying Transforms

I. TRANSFORM LEARNING The formulations for learning synthesis [1] and analysis [2], [3] sparsifying dictionaries are typically non-convex and NP-hard, and the approximate algorithms are still computationally expensive. As an alternative, we recently introduced an approach for learning square sparsifying transforms W ∈ Rm×n, m = n [4], which are competitive with overcomplete synthesis or analysi...

متن کامل

Online Sparsifying Transform Learning - Part II: Convergence Analysis

Sparsity based techniques have been widely popular in signal processing applications such as compression, denoising, and compressed sensing. Recently, the learning of sparsifying transforms for data has received interest. The advantage of the transform model is that it enables cheap and exact computations. In Part I of this work, efficient methods for online learning of square sparsifying trans...

متن کامل

ℓ0 Sparsifying Transform Learning with Efficient Optimal Updates and Convergence Guarantees

Many applications in signal processing benefit from the sparsity of signals in a certain transform domain or dictionary. Synthesis sparsifying dictionaries that are directly adapted to data have been popular in applications such as image denoising, inpainting, and medical image reconstruction. In this work, we focus instead on the sparsifying transform model, and study the learning of well-cond...

متن کامل

FRIST - Flipping and Rotation Invariant Sparsifying Transform Learning and Applications

Features based on sparse representation, especially using the synthesis dictionary model, have been heavily exploited in signal processing and computer vision. However, synthesis dictionary learning typically involves NP-hard sparse coding and expensive learning steps. Recently, sparsifying transform learning received interest for its cheap computation and its optimal updates in the alternating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018